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SUMMARY

This note presents the results of a series of axial-load, constant
amplitude fatigue tests at zero mean stress on oxygen-free, high-
conductivity (OFHC) copper specimens. A total of 631 specimens were
tested at four stress levels near the lower 'knee'' of the S-N curve.

The log-normal (Gaussian) and the Weibull (Extreme Value)
distribution functions were fitted to the complete sample of test endurance
data at each of the four stress levels. A combination of two log-normal
distribution functions and a combination of a log-normal and a Weibull
distribution function were also applied since at all stress levels a two
mode single, or bimodal distribution representation appeared feasible.

The main results of this study are:

1. At all four stress levels tested, the existence of two modes in the
endurance distributions was indicated by (a) the apparent bimodality in the
endurance histograms, (b) the significantly different values of the standard
deviations of the low-endurance and high endurance components respec-
tively, and their consistency with stress level, and (c) by the consistent
variations in the parameters of the low-endurance log-normal component
distributions as determined by the truncation method.

2. The overall standard deviation was found to be largest for the highest
stress level,

3. The single Weibull distribution function gave the best fit not only for the
endurances at each stress level but also for the high-endurance compon-
ents at all stress levels.

4, The better estimates for the parameters of the Weibull distribution

functions were obtained by the upper vertical moment rather than the
classical moment method,

iii



TABLE OF CONTENTS

NOTATION
L. INTRODUCTION
IIL. MATERIAL, APPARATUS AND TEST

I1I.

Iv.

Vo

PROCEDURE

Specimen Material

Specimen Configuration and Preparation
The Fatigue Machine

Machine Calibration

Machine Accuracy

Test Procedure

Environmental Conditions

.

DNDNNDNNNDND
.« 9
SO0 W N

THE DISTRIBUTION FUNCTIONS
ANALYSIS OF RESULTS

The Control Tensile Specimens
Single Log-Normal Distribution
Single Weibull (Extreme Value) Distribution
4. 3.1 Classical Moment Method
4. 3. 2. Method of Upper Vertical Moments
Two Log-Normal Distributions
Combined Log-Normal And Weibull
Distributions

Ll o

W DN

P P
[

CONCLUDING REMARKS

REFERENCES

TABLES I to VII

APPENDICES A to F

iv

PageNo.

IO W w

-3

= O W W o ~3

12

14



f(N)
F(N)

F1(N)

ksi

LTF

NOTATION !

Weibull shape parameter

Young's modulus

Weibull frequency distribution function

Weibull cumulative probability function

Extreme value cumulative probability function

Moment of intertia of a cross section in bending. For a
circular cross section, I is given by D4/64; for a square
cross section of width B, I is given by B4/12

Thousands of pounds per square inch

Long Term Fatigue - designating the high-endurance component
in a bimodal distribution
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Length of the parallel test section of the fatigue specimen
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Natural logarithm

Bending moment

Slope of the regression line

Bending moment at the strain gauges on the alignment specimen
Bending moment due to angular displacement,

Bending moment due té translational displacement,

Total number of observations in the sample of a population

Number of observations, the endurance values of which are
known in a truncated sample

The endurance of a specimen in cycles

The ith endurance when the N values have been arranged in
ascending sequence
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Distance in inches from the specimen neutral axis to the
point at which the bending stress O"B is being calculated
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I INTRODUCTION

The large scatter observed in fatigue endurances of nominally
identical specimens subjected to nominally identical load cycles has lead
to the recognition of fatigue failure as a statistical phenomenon, Some
of the scatter can be attributed to random variations and errors in the
applied loads, to inherent inaccuracies (e. g. alignment) in the fatigue
machine, and to non-uniform test conditions (environmental changes) and
test procedures. Variations in specimen properties, surface conditions,
dimensions and geometry due to manufacturing tolerances and processes,
also contribute to this type of scatter. Furthermore, a number of mater-
ial properties affect the endurance scatter. For example, material fab-
rication history (heat treatment and cold work prior to testing); grain
size and orientation; submicroscopic defects such as inclusions, vacancies,
lattice stacking faults, dislocation density, etc.

Because of this scatter, constant amplitude fatigue results can
be effectively presented only by a relation between the stress of amplitude
S, the endurance N, and the probability P that any specimen subjected to
a given number of load cycles of the stress amplitude S will fail at or
before N cycles are reached. For a structural element subjected to
fatigue loading it is (for practical and economic reasons) not feasible to
design for zero probability of failure, and usually a very small but finite
risk of failure must be assumed. The accuracy of the probability function
on which this risk is based, is thus of great importance for the designer,

In the analysis of constant stress amplitude fatigue test results,
several distribution functions have proven useful in representing the test
endurance data. Perhaps the best known is the log-normal or Gaussian
which assumes the log of the number of cycles to failure to be normally
distributed. This distribution, and others such as the extreme value
distribution, fit the data well, especially near the mode of the distribution.

Usually the best fit of constant amplitude test data to any parti-
cular type of distribution is found at high stress levels. At the "knee' of
the S-N curve, the scatter seems to be larger and extrapolation into pro-
bability ranges not covered by test data becomes quite dubious. In this
stress range, also a discontinuity in the S-N curve has been reported.
(Refs. 1, 2 and 3).

Certain observations of a large scatter and discontinuity at the
knee of the S-N curve have been interpreted by Swanson (Refs. 4 and 5)
and Cicci (Ref. 6) as being the result of a blending of two endurance distri-
butions caused by two coexisting failure mechanisms. One is predominantly
causing failure above the knee, the other one below it. The knee itself is
the transition region characterized by the gradual decay in probability of
occurrence of the one failure mechanism and the growth of the other.
Thus, according to this concept, at any stress level within the transition
region a compound failure probability exists due to the component failure
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probabilities from the two mechanisms.

Also from a metallographic point of view, there are reasons
for considering the knee as a transition region. W. A, Wood (Ref. 7) has
on the basis of observed fatigue-induced microstructural differences
divided the generalized S-N curve into three strain amplitude ranges, H,
F and S. In the H range, endurances increase only slightly with decreasing
stress, in the F or intermediate range, a small reduction in stress
amplitude gives a very large increase in endurance, and in the S or .
pseudo-safe, low stress range, the endurances approach infinity. Thus,
the knee can be considered as a transition region where each stress level
is characterized by the amount of H F and S-type fatigue damage present
in the microstructure. -

The present investigation was undertaken to check the existance
of bimodal endurance distributions on a sound statistical basis. Instead
of alloys, for which some evidence exists (Ref. 5), OFHC copper was
chosen as the test material. At least 150 specimens were to be fatigue
tested at each of four stress levels around the lower knee of the S-N curve
under axial, constant amplitude loading. OFHC copper was chosen because
of its simple and clean microstructure which is well suited for a subse-
quent metallographic examination of the failed specimens. (see Ref. 8)

II MATERIAL, APPARATUS AND TEST PROCEDURE

2.1 Specimen material:

The material used for this series of tests was certified OFHC
copper of 99.95% + purity. The copper was supplied by Anaconda Co.
(Canada) Ltd, in the half-hard cold drawn state in the form of 3/4'" dia.,
12 ft, long rods.

The rough-machined specimens were annealed for two hours
at 1050°F in a vacuum of 0. 025 mm Hg in batches of 200, After machining
they were fine machined to final dimensions (Fig. 2).

To check the uniformity of the heat treatment and to obtain
samples of the mechanical properties, seven control specimens were
picked out at random from each batch. These specimens were tested in
an Instron tensile testing machine and their mechanical properties are
listed in Table I. The specimens were found to be extremely soft. This
resulted in some difficulties in the tensile tests and may account for the
comparatively large scatter in the test results.

While the annealing process provided complete stress relaxation
of the specimens, the annealing temperature and time were insufficient to
bring about a complete recrystallization. Figure 1 shows a micrograph
of the core of an untested specimen. The grain structure is characterized
by a large variation in grain size and the presence of a number of partly
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recrystallized grains,

The final machining caused the formation of a work-hardened
layer at the surface, The depth of this layer, about 0. 01 inch, was some-
what larger than expected.

Because of the large number of specimens involved the annealing
and machining of the specimens had to be done outside the University and
the conditions under which these processes were performed could there-
fore not be controlled as carefully as desirable,

2.2 Specimen Configuration and Preparation:

The shape and dimensions of the fatigue specimens are given
in Fig. 2. To avoid stress concentration at the ends of the parallel] test
section the curvature at the fillets as shown was adopted, Photoelastic
strain analysis (Ref. 9) has shown that this curvature practically eliminates
sharp stress gradients.

Due to warping of the specimens during annealing the machining
was done in two stages. First the specimens were rough machined leaving
all diameters 0.025 in. oversize. A hole was drilled and tapped in one
end so that the specimens could be annealed in the hanging position. After
annealing the final machining was done by taking passes of 0. 0025 in.
depth at a feed of only 0. 002 in, per revolution.

The specimen dimensions were measured prior to testing
using an optical comparator. The test section diameter was measured
at three locations, at each end and at midlength. The eccentricity was
measured at the same locations. It was found that the diameters at the
fillets were consistently smaller by about 0. 001 in, than those measured
at midlength. This was most likely due to a slight undercut on the template
used in the machining. The loads used in testing were always calculated
using the smallest cross-section diameter. Specimens having eccentricities
exceeding 1/1000 in., (measured at midlength) were rejected.

2.3 The Fatigue Machine:

The machine used for this investigation was of a patented type
(Ref. 10), the driving force being supplied by an electromagnetic shaker
of 25 1bs, maximum load capacity. A schematic diagram of the machine
is shown in Fig. 3 and a photograph of the machine and its instrumentation
is shown in Fig. 4.

The dynamic system consists of the shaker, (see Fig., 3 and
5b), a lever hinged at one end by crossed flat steel springs, the load-
transmitting vertical springs which also serve as }oad dynamometor (the
springs are strain-gauged) and the lower (moving) gripping head. The
lower head is mounted on parallel springs which allow movement in the
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vertical direction only, without rotation of the head. The upper gripping
head is rigidly connected to the machine structure. It was made adjustable
in the vertical direction in order to turn the lever to a reference position
after the specimen was clamped in the grips.

The gripping arrangement is also shown in Fig. 5a. The grips
are standard ''rubber-flex' collets with wedge-shaped hardened steel
plates which have been hook-serrated to give firm gripping action. To
insert a specimen the sliding block (see Fig. 5a) is pushed back and the
specimen is lowered into the collet. The collet compression disk is then
tightened until the specimen is firmly gripped. Returning the sliding
block, the back-up pin is tightened against the end of the specimen. By
alternately tightening the collet compression disk and the back-up pin, the
specimen is firmly clamped and able to withstand both tension and com-
pression axial dynamic loading, without slipping in the grips. The gripping
heads, which are free to move during the gripping procedure, are then
moved to and locked in their reference position. This gripping arrange-
ment has proved very satisfactory. In none of the tests was there any
evidence of slipping of the specimen in the grips.

The input signal to the shaker was an amplified sine-wave from
an audio oscillator. The resonance frequency of the specimen-shaker-
lever system was approximately 80 cps. The maximum alternating load
amplitude obtained with a copper specimen was about 1000 1bs. With
added weights (24 1bs) attached to the lever, the maximum load could be
increased to about 1100 1bs., however, the resonant frequency was then
reduced to about 57 cps. The weights had to be used for the highest
stress level (16.5 ksi) used in this program. The reduction in frequency
is not considered to have a significant effect on the fatigue properties, as
concluded by Stephenson in Ref, 11.

The signal from the dynamometer strain gauges was amplified
by a bridge pre-amplifier and measured by an electronic voltmeter. The
dynamic component of the signal was used to drive a photo-electric controller
with two cut-out points. The high point was used to switch on a warning light
when the load dropped below a preset value. The low cut-out point de-
energized the main power supply relay (for the shaker amplifier and certain
instruments) and thus served as a shut-off device. The total number of
cycles to failure was recorded by an electronic counter operating on the
oscillator signal. The testing time was measured by an ordinary electric
wall clock in the controller circuit. This provided a rough check on the
counter since the number of cycles to failure could be calculated, if necess-
ary, from the total testing time and the frequency.

2.4 Machine Calibration:

A special calibration specimen was made up from 7075-T6 alum-
inum alloy. The middle portion of this specimen was square-sided with
a 0.45 x 0. 45 in. cross-section while the cylindrical gripping ends were
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of the same diameter as the gripping ends of the fatigue specimens. Two
opposite faces were strain gauged, the gauges being wired in a Wheatstone
bridge to measure longitudinal strains only,

The calibration specimen was first calibrated in a Tinius Olsen
tensile testing machine using a strain indicator. Then the specimen was
placed in the fatigue machine and the load dynamometer calibrated stati-
cally, using the mean stress spring to apply load to the specimen,

In the dynamic load calibration a load monitoring system, con-
sisting of an oscilloscope, a strain indicator and a bridge pre-amplifier
was used. First the oscilloscope was calibrated statically using the bridge
output, the load being set up with the calibration specimen and the strain
indicator. Starting the machine and adjusting the load, the dynamic signal
was made equal in magnitude to the previous static signal. Disconnecting
the oscilloscope with the machine running, the pre-amplifier-voltmeter
circuit was connected to the dynamometer and the load calibration for
the voltmeter was obtained.

2.5 Machine Accuracy :

Since this investigation was aimed at determining the endurance
distributions as a material property, great care was taken during assembly
and calibration of the machine to avoid random errors resulting from
inaccuracies in the machine and load-measuring devices.

An inherent source of errors in axial-load fatigue machines is
the gripping arrangement. Slightly inaccurate alignment of the grips will
introduce large errors. For commercial machines, errors ranging from
2 up to 20 per cent have been measured (Ref. 12),

For the final alignment of the grips, a strain-gauged steel
specimen with a square cross-section between the grips was made., The
strain gauges were mounted on all four faces, and those on opposite faces
were wired in pairs in a Wheatstone bridge to measure bending strains
only. One set consisting of two pairs of gauges was mounted vertically
at each end of the free-length portion of the specimen thus making it
possible to take readings of the bending strain at two points in each of two
vertical planes at right angles to each other. With the machine's lower
gripping head completely loose, the specimen was gripped at both ends
and the lower head was adjusted to minimize the bending strains.

It was found, however, that in spite of alignment to better than
1/1000 in,, strains could not be completely eliminated. An analysis of
the effect of residual misalignment on the stress in the test piece was
carried out (Appendix E) using the residual strain readings. While this
analysis shows that the resulting stresses in the fati gue specimen are
still appreciable, it is emphasized that this type of error is constant for
all specimens tested at the same stress level and should therefore not



affect their endurance distribution.

A complete analysis of the possible errors in dynamic load is
very complex and was not carried out in detail. However, on the basis
of an assessment of the accuracies of the individual instruments involved,
it is estimated that the maximum error in dynamic load is of the order of
about 1.5%. This is confirmed qualitatively by the data obtained from the
tests at the two lowest stress levels, 13.0 ksi and 12. 7 ksi., Although the
spacing of these stress levels is only about 2. 4% of the stress amplitude,
there is a significant difference in the mean endurance.

2.6 Test Procedure:

Particular care was taken in the operation of the machine to
keep experimental errors to a minimum. After insertion in the machine
a mark was placed on the specimen near the lower grip to facilitate later
a crack position correlation with the position of the specimen in the
machine,

In nearly all tests, the crack initiated at the same location on the
specimen, namely at the front of the lower fillet. Two factors accounted
for this. First, it was found that the slight undercut in the test section
diameter was always located at this lower fillet. Secondly, the calcula-
tions carried out in Appendix E show that the largest bending strain due
to misalignment of the grips was present at the front of the lower fillet,
The other maximum value of the bending strain occurred at the back of
the top fillet and this was where the crack started on those few specimens
that did not fail at the lower fillet.

Since uniformity of the specimens within a group tested at the same
stress level was considered of greater importance than uniformity between
specimens tested at different stress levels, it was decided to use at each
stress level specimens from one heat treatment batch only.

Prior to each test the bridge pre-amplifier and the electronic
voltmeter were zero-checked and calibrated.

During the first 3 minutes of each test it was found necessary to
reduce the power input to the machine continuously because of extensive
work-hardening in the specimen. During this period of 10,000 - 12, 000
cycles, the resonant frequency also changed slightly. After the starting
period the load had to be re-adjusted (slightly upward) at intervals of
approx, 15 min, for the higher stress levels while at the lower stress
levels, similar load adjustments were necessary only every 2-3 hours.

The amount of heat produced in the fatigue specimens due to
energy dissipation at the higher stress levels was quite noticeable. To
obtain some idea of the temperature increase in the specimen, a thermo-
couple was attached to the test section of some of the specimens and the
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temperature recorded continuously throughout the test. A description of
these measurements is found in Appendix F.

2.7 Environmental Conditions:

Al] tests were done at room temperature and uncontrolled room
humidity. Since the laboratory in which the fatigue machine was located
is surrounded by other rooms and has no direct openings to the outside,
and since the bulk of the testing was done at a time of the year when indoor
heating was used, relatively small variations in humidity and temperature
were recorded. Fig. 6 shows a typical plot of temperature and humidity
versus log (cycles to failure). While no correlation is apparent between
temperature and endurances, there is a slight correlation favouring low
endurances at high values of relative humidity.

III. THE DISTRIBUTION FUNCTIONS

In the interpretation of fatigue data the endurances are usually
assumed to be distributed in such a manner as to form a single distri-
bution. The assumption of more than one failure mechanism operating
at any one stress level and causing the endurances to group around charac-
teristic mean values for each mechanism, leads to the concept of a heter-
ogeneous endurance population, i, e. an endurance distribution containing
two or more modes,

The test endurances are plotted in histograms (Fig. 7) using a
class length of 0. 01 log N. All plots, except the one for the lowest stress
level, show a dip or ''valley'' to the left of the peak of the distribution.
Assuming that the secondary peak to the left is significant, it could be
interpreted as evidence for a two-mode or bimodal distribution (schema-
tically indicated by dashed lines in Fig. 7).

Two types of distribution functions were considered for best fit
to the overall test endurance distributions, namely the log-normal or
Gaussian, and the Weibull (Extreme Value). Combinations of (a) two log-
normal distributions and (b) a log-normal and a Weibull distribution
function were also applied at all stress levels.

Appendix A, B and C give the theoretical background for the
calculation of the parameters for the single (undivided) and truncated

distribution functions of the two types used.

IV, ANALYSIS OF RESULTS

4.1 The Control Tensile Specimens:

The arithmetic mean and standard deviation of the various pro-
perties were calculated by the standard formulae, The results are listed
in Table I,



The true mean /( will lie between the limits

Eit&s //\/—r_l_

where t o depends on the number of values measured, n, and the degree
of confidence required, < ., Choosing o = 95%, i.e. the probability that
the interval x + to S /V—E contains /L is 95% results in to = 2. 04
(Ref. 21). The 95% confidence limits are given for the more important
properties in Table L.

4,2 Single Log-Normal Distribution:

Considering the test endurance distribution to be a single log-
normal distribution, the parameters x and s were calculated, using the
standard formulae given in the Notation. These parameters are listed in
Table III., The endurance data for the four test stress levels are plotted
as single distributions on log-normal probability paper in Fig. 8. Using
the method of least squares a linear regression was carried out on the
relation between ranked endurances and probability. The solid lines on
the plots are the regression lines, The correlation coefficient is given in
each case on the plots.

The slopes of the regression lines and the standard deviation in
Table III show that the variance of the distribution for the lowest stress
level (12,7 ksi) is less than that at the highest stress level, while the
variances for the two other stress levels have intermediate values., This
is rather unusual; instead of increasing scatter with decreasing stress as
one conventionally expects, at least for alloys, the scatter of the endurances
in the present results varies in a rather unconventional manner from one
stress level to another,

The probability plot for the 16,5 ksi siress level shows that the
endurances fit very closely to the single distribution regression line. The
random manner with which the points are scattered about this line seems
to suggest that the sample is drawn from a single normal population.

The test data for the intermediate stress levels (14.0 and 13. 0 ksi)
do not fit as well to a straight line and there is an orderly trend in their
deviation from the regression line which, however, can also be detected
at the 16, 5 ksi stress level. Below a probability of failure of approximately
30%, the curves for all three levels are scattered about a line (dashed line)
with a lower slope than the regression line. Above 30% probability there
is a transition region up to about 40%, above which the points seem to fit
closely to another straight line (dashed in Fig. 8.). This line is steeper
than the regression line. Both dashed lines were fitted visually. The
interpretation of the two dashed lines implies that there could be two com-
ponents in the endurance distribution for each of the three stress levels,
the parts below 30% probability of failure having a smaller variance than
those above, demonstrated by the difference in slope. The heterogeneous
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nature of the three samples is also demonstrated by the histogram plots
of the fatigue endurances in Fig. 7, which exhibit a double "hump'' for
the three highest stress levels and a degenerate form of bimodality at the
12, 7 ksi level.

The probability plot for the 12.7 ksi stress level (Fig. 8) shows
that the endurances fit the regression line rather poorly. But note that
they follow a smooth curve better than the two dashed lines. This may be
taken as an indication that the lower bound of the distribution is non-zero
and that a three-parameter distribution function is required, (Ref. 12), to
represent the test endurances best. This is confirmed by the cumulative
frequency plot for this stress level (Fig. 9), where the data fit the single
log-normal distribution curve poorly, except in the high-endurance part.
(In Fig. 9 the curves for the two Weibull distribution functions are drawn
for comparison. It should be noted, however, that these distribution
functions were calculated for the distribution of N (cycles), not log (N),
which is the abscissa in Fig. 9. The correlation coefficients given else-
where for these distribution functions do therefore not apply to Fig. 9).

4, 3 Single Weibull (Extreme Value) Distributions:

4, 3.1 Classical Moment Method-

Following the procedure in Appendix B, the estimate of the skewness
parameter was calculated from Eq. B. 8 using the University of Toronto
IBM 7090/7094-11 computer. Using Table I in ref. 13 the parameters b,
A(b), and B(b) were found and Ny and V were calculated from Egs. B. 11
and B. 10 respectively, With these values a regression analysis was
carried out and the data plotted on extreme value probability paper, using
the plotting position of Eq. D.8. These plots are shown in Fig, 10, with
the values of the parameters, N, and the correlation coefficients, r,

given in each case. All the Weibull parameters and correlation coefficients
are listed in Table IV,

The way the experimental points in Fig. 10 are scattered about the re-
gression lines shows that the estimates of the parameters are quite good.
For instance, the effect of an incorrect estimate of N is to bend the
curve away from the regression line at the tails of the distribution. The
overall correlation coefficients are in all cases, except the lowest stress
level (12,7 ksi), smaller than those for the log-normal representation,
but the differences are very small,

4. 3.2 Method of Upper Vertical Moments -

Using the procedure outlined in Appendix C the parameters b, N, and V
were calculated from Egs. C.11, C. 12 and C. 19, respectively, using
Egs. C. 14 and C. 15 to estimate the upper vertical moments. The values
of these parameters differ somewhat from those obtained by the classical
moment method, but the differences are small considering the large
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influence which small numerical variations in the X, values have on the
parameters, The difference in the shape of the frequency distribution
functions for the upper vertical moment method as compared with those
obtained by the classical moment method is also small, as demonstrated
in Fig. 12,

The parameters N,, and the correlation coefficients, obtained by a re-
gression analysis identical to that in the preceding section, are listed in
Table V. It is seen that the estimates of the parameters of the Weibull
distribution functions by the method of upper vertical moments give corre-
lation coefficients which in all cases are higher than those for the log-normal
distribution, and also higher than those calculated by the classical moment
method. This is further illustrated in Fig. 11 by the close fit of the endur-
ances to the regression lines.

4,4 Two Log-Normal Distributions:

In representing the endurance data at one stress level as a com-
bination of two distribution functions, the problem of dissection of the
endurance distribution arises since the components obviously are over-
lapping (see Fig. 7). The method used here is to calculate the two sets
of parameters, using only the tail ends of the combined distributions, i.e.
to truncate the data so that only the observations above and below the
overlap region are used for the determination of the parameters., Assuming
the tail ends to be parts of normal distributions, one should find that after
some initial variation in the estimated parameters for small samples, the
parameters should approach stable values as the truncation point is approa-
ching the centre of the undivided distribution.

Using the procedure outlined in Appendix A, the parameters x
and s were calculated taking as the truncation point %, the arithmetic mean
of the logarithms of two adjacent endurances of the last (or first, depending
on which tail end is considered) endurance in front (or behind) and the first
(or last) endurance in the overlapping region. Using the IBM computer it
was possible to calculate x and s for a wide choice of truncation points, in
fact for nearly all endurances with the exception of the extreme tail ends.
The calculated parameters are plotted versus the number of specimens in
the truncated sample, ni,., for the low-endurance part in Fig. 14. For
comparison the values of x and s calculated for the single log-normal
distributions representing all endurances at each stress level are indicated
on the graphs.

The large, apparently random variations in the parameters for the
lowest stress level, 12.7 ksi, show that the sample is very irregular and
the truncated log-normal distribution in this case is very unreliable for
the estimation of the parameters. The results for the three highest stress
levels, however, show a trend., After initially large variations of x and s
for small values of ny,., a region is reached in which there is an abrupt
drop in the values of the parameters, corresponding to the dip in the histo-
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gram plots in Fig. 7 and to the jog in the probability curves in Fig. 8.

After this drop the parameters increase in a more or less uniform manner
to reach the values of the parameters for the single log-normal distributions
as upper limits (see Fig, 14),

Assuming this abrupt drop to indicate the extent of the predomin-
ance of the STF component mode the corresponding total number of
specimens in the STF mode were estimated by taking twice the number of
specimens the endurances of which were lower than that for the mean, x R
specified by the drop. These estimates of the STF parameters and the
number of specimens in each STF mode are given in Table VI. In the
histograms the STF (shaded) component represents approximately the
value of nyp corresponding to the chosen values of x and s, except for the
12,7 ksi case in which the STF component was estimated from the histo-
gram. The number of specimens in the STF component (shaded part in the
histograms) is plotted for the top three stress levels on log-normal pro-
bability paper (Fig. 16) taking the total cumulative probability for each
STF mode equal to unity., The plots show that the low-endurance (STF)
component is well represented by a log-normal distribution,

Although the histograms show that the STF components in some
cases are slanted to the right (toward the high-endurance part), it was not
attempted to represent the STF components also by a Weibull distribution
since the skewness to the right implies an upper bound, a "maximum life"
rather than a minimum life parameter, thus contradicting the underlying
assumptions for the extreme value distributions (the "weakest link'' concept).
The apparent skewness could be explained by the fact that the component
distributions are strongly overlapping.

The parameters obtained by considering the high-endurance tail
end truncated (i. e. known) are plotted in Fig., 15. Only the two intermediate
stress levels are considered. In the case of the 14, 0 ksi stress level,
there is an abrupt drop similar to that observed in Fig. 14b for the low-
endurance case, when the sample comprises about 90 specimens. This
drop corresponds to the discussed dip in the histogram of Fig. 7c, but the
value of X in this region is so low that it gives the estimated number of
specimens in the LTF distribution at about 170, a number which is larger
than the number of specimens tested at this stress level. At the 13.0 ksi
level the parameters vary in such a manner that a clear indication of the
LTF range extent cannot be obtained. The plots for the highest and lowest
stress levels showed a similar behaviour. These results, and the obvious
skewness to the left of the LLTF distribution which the histograms show,
suggest that a representation of the LTF component by a log-normal distri-
bution would give a very poor fit. The endurance data for the high-endurance
components at all stress levels were therefore not plotted on log-normal
probability paper and no regression analysis was carried out.
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4,5 Combined Log-Normal and Weibull Distributions:

Using the same log-normal distribution functions as calculated in
the preceeding section to represent the STF components, the Weibull
distribution functions for the high-endurance components were calculated
using the upper vertical moment method, The parameters were computed
for a range of truncation points and regression was carried out in each
case. The degree of truncation which gave the highest correlation coeffi-
cient was chosen and the resulting distributions are plotted on extreme
value probability paper in Fig. 17. The values of the Ny parameters is
given on the graphs together with the correlation coefficients. It is seen
that the fit is not as good as in the single Weibull (upper vertical moment
method) presentation, (Fig. 11).

The standard deviation for both N and log N were calculated for
the LTF component using the formula given in the Notation. The endurances
used were all those greater than N,. The values of the standard deviations
and the parameters of the LTF Weibull components are listed in Table VIIL,

A S-N curve showing the endurance scatter ranges, the means of
the (log-normal) STF and the (Weibull) LTF modes as well as the means
of the Weibull single distributions is shown in Fig. 13(a).

The standard deviations for the STF and LTF modes and for the
single distributions are plotted in Fig, 13(b). It is seen that the standard
deviations for the STF and LLTF modes are consistently lower at all stress
levels and are in all cases highest at the highest stress level. The factor
of two in the standard deviations, by which the STF and LTF modes are
separated is the most convincing evidence that the endurances represent
a single distribution with two modes, or a bimodal distribution.

V. CONCLUDING REMARKS

The axial -load fatigue endurance distributions of annealed OFHC
copper specimens with a cold-worked surface layer, tested at four stress
levels under constant-amplitude tension-compression, form the basis
for the following observations:

1. Evidence for the existance of two modes in the endurance distri-
butions is indicated by three features of these distributions:

(a) The apparent bimodality in the endurance histograms.

(b) The significantly and consistently different values at all
stress levels for the standard deviations of the STF and LTF
modes respectively.

(c) The consistent variations in the STF parameters obtained by
the maximum likelihood truncation method.
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Further refinements of the analysis leading to the estimation of
the parameters of the underlying component distributions (e. g. the method
of maximum likelihood being applied to the data where the underlying
distribution is assumed to be composed of (STF) log-normal component
and (LTF) Weibull component are possible, but would not remove the
ambiguity in the identification of the endurances in the overlap region.

Earlier observations in the literature of the bimodal phenomenon
with two well-separated component distributions may possibly be explained
by the fact that the materials involved were alloys, while in the present
investigation a pure metal was tested. This difference is worthy of further
investigation.

2. The overall standard deviation was largest for the highest stress
level, decreasing with decreasing stress amplitude.

3. Using the correlation coefficient as criterion for the ''goodness
of fit" of the distribution functions to the test data in addition to a visual
comparison of the probability plots, the following conclusion can be drawn:

(a) Single Weibull (Extreme Value) distribution functions, with
the parameters calculated by the upper vertical moment method
in all cases fitted the test data better than log-normal functions,
(b) Log-normal distribution functions, due to the apparent
symmetry of the STF modes of the test data gave the expected
good fit, but the

(c) LTF modes could be represented best by Weibull distribution
functions.

(d) The best estimates of the parameters for the Weibull distri-
bution functions were obtained by the method of upper vertical
moments,
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RANKED FATIGUE ENDURANCES

(CYCLES TO FAILURE) x 1076

Rank 12, 7 ksi 13. 0 ksi 14, 0 ksi 16,5 ksi
1 0. 7737 0.8215 0. 3016 0.1224
2 0. 8096 0.8426 0.3168 0.1245
3 0.8167 0. 8427 0, 3231 0.1274
4 0. 9244 0. 8476 0. 3260 0. 1306
5 0. 9344 0.9172 0. 3289 0.1308
6 0.9533 0.9210 0. 3310 0.1322
7 0. 9542 0.9220 0. 3330 0. 1347
8 0. 9687 0.9225 0. 3343 0. 1366
9 0, 9860 0.9328 0.3370 0.1385

10 1. 0017 0.9474 0. 3420 0.1399

11 1. 0300 0.9481 0. 3460 0. 1409

12 1, 0389 0.9674 0. 3478 0. 1413

13 1..0520 0. 9746 0. 3479 0. 1434

14 1. 0743 0.9771 0. 3494 0.1436

15 1. 0943 0.97179 0, 3513 0. 1457

16 1. 1010 0.9786 0. 3536 0.1464

17 1. 1113 0.9830 0. 3560 0.1484

18 1. 1403 0.9884 0. 3568 0. 1490

19 1. 1522 0.9891 0. 3606 0.1493

20 1. 1527 0.9936 0. 3610 0.1520

21 1, 1632 1, 0096 0. 3631 0. 1521

22 1.1782 1.0104 0. 3704 0.1531

23 1. 1887 1.0106 0. 3710 0. 1549

24 1. 2067 1.0109 0, 3743 0.1550

25 1. 2255 1.0142 0. 3744 0.1555

26 1. 2360 1.0159 0. 3755 0.1576

27 1. 2606 1,0184 0. 3768 0.1583

28 1.2618 1. 0221 0. 3770 0.1585

29 1.2638 1, 0227 0. 3790 0.1598

30 1. 2640 1. 0240 0. 3795 0.1602

31 1, 2662 1.1310 0. 3801 0.1602

32 1,2738 1. 0316 0. 3822 0.1605

33 1. 2868 1. 0386 0. 3823 0.1607

34 1. 3015 1. 0443 0. 3826 0.1608

35 1. 3019 1, 0479 0. 3840 0.1610

36 1. 3062 1.0533 0. 3856 0,1619

37 1, 3168 1.0594 0. 3872 0.1631

38 1. 3253 1.1612 0. 3876 0.1679

39 1. 3267 1,0636 0. 3910 0.1688

40 1, 3322 1. 0662 0. 3918 0.1696

41 1. 3364 1.0663 0. 3919 0.1720

42 1, 3427 1.0923 0. 3925 0.1723

43 1. 3467 1.1013 0.4070 0.1737

44 1. 3594 1. 1020 0. 4070 0.1745

45 1. 3749 1.1038 0. 4073 0.1746




TABLE II - continued

Rank 12, 7 ksi 13. 0 ksi 14, 0 ksi 16,5 ksi
46 1. 3785 1.1070 0. 4093 0.1747
47 1. 3793 1,1130 0.4120 0. 1757
48 1. 4024 1.1208 0.4121 0.1758
49 1. 4035 1.1208 0.4160 0.1767
50 1. 4095 1.1428 0. 4237 0,1767
51 1. 4133 1.1724 0. 4243 0.1768
52 1. 4135 1.1759 0, 4280 0.1790
53 1. 4143 1,1773 0. 4296 0.1795
54 1. 4163 1.1850 0.4350 0.1799
95 1. 4348 1.1990 0.4377 0. 1806
56 1. 4381 1,2013 0. 4380 0.1815
57 1. 4503 1.2096 0.4390 0.1818
58 1. 4510 1.2143 0. 4437 0.1822
59 1. 4544 1.2211 0. 4464 0.1835
60 1. 4564 1,2251 0. 4470 0.1836
61 1, 4572 1.2264 0.4474 0.1839
62 1. 4606 1.2289 0. 4490 0.1862
63 1. 4625 1.2296 0.4504 0.1864
64 1. 4638 1.2633 0.4517 0. 1866
65 1. 4751 1.2662 0. 4530 0.1868
66 1.4813 1.2692 0.4544 0.1870
67 1. 4815 1.2719 0.4552 0.1881
68 1. 4872 1.2761 0. 4557 0.1889
69 1. 4903 1.2766 0. 4580 0. 1902
70 1. 4977 1.2854 0. 4596 0. 1907
71 1. 5210 1.2882 0.4630 0. 1908
72 1. 5238 1.2889 0.4632 0.1912
73 1. 5299 1,2943 0. 4660 0.1930
74 1. 5393 1.2957 0.4674 0.1933
15 1. 5396 1. 3014 0. 4702 0.1935
76 1.5439 1. 3024 0.4715 0.1935
(i 1.5518 1. 3032 0. 4727 0.1941
78 1. 5549 1. 3124 0.4733 0. 1942
79 1. 5570 1. 3212 0.4762 0.1947
80 1. 5576 1. 3259 0.4766 0.1948
81 1. 5722 1. 3300 0.4766 0.1951
82 1. 5773 1, 3372 0.4778 0.1980
83 1. 5794 1. 3389 0. 4810 0. 1985
84 1.5803 1. 3392 0.4832 0. 1992
85 1. 5847 1. 3423 0, 4847 0.2001
86 1. 5871 1. 3461 0. 4860 0.2009
87 1.5950 1. 3464 0.4913 0.2019
88 1. 5952 1. 3472 0. 4938 0.2019
89 1. 6030 1. 3474 0.4974 0.2029
90 1. 6062 1. 3500 0. 5004 0.2036
91 1.6140 1. 3602 0.5035 0.2041
92 1.6149 1. 3609 0. 5046 0. 2049
93 1. 6160 1. 3629 0. 5053 0. 2057




TABLE II - continued

Rank 12,7 ksi 13,0 ksi 14, 0 ksi 16. 5 ksi
94 1. 6210 1, 3795 0. 5066 0. 2065
95 1. 6231 1. 3836 0.5082 0. 2065
96 1. 6232 1. 3910 0.5112 0.2067
97 1. 6256 1. 3955 0.5139 0.2067
98 1. 6332 1. 3988 0. 5155 0. 2068
99 1. 6464 1.4100 0.5180 0.2078
100 1. 6497 1.4119 0.5290 0.2083
101 1. 6499 1.4212 0. 5293 0.2083
102 1. 6580 1.4218 0.5320 0.2087
103 1. 6625 1.4247 0. 5340 0.2106
104 1. 6741 1. 4469 0. 5370 0.2110
105 1.6813 1. 4550 0. 5500 0.2113
106 1. 6872 1, 4713 0. 5501 0.2114
107 1.6971 1, 4794 0.5546 0.2127
108 1. 6990 1. 4815 0. 5549 0.2137
109 1. 6992 1. 4870 0. 5690 0.2145
110 1. 6995 1. 4970 0. 5796 0.2152
111 1.7215 1. 4990 0. 5830 0.2158
112 1.7236 1.5017 0. 5997 0.2165
113 1. 7305 1.5100 0. 6040 0.2166
114 1.7359 1.5138 0.6050 0.2170
115 1, 7551 1.5223 0.6114 0.2171
116 1.7578 1.5351 0.6120 0.2171
117 1.7610 1.5462 0.6279 0.2178
118 1.7762 1.5619 0.6285 0.2178
119 1, 7873 1. 5620 0. 6302 0.2189
120 1.7882 1. 5644 0. 6332 0.2198
121 1. 7940 1.5788 0.6419 0.2205
122 1. 8044 1. 5819 0. 6488 0.2235
123 1. 8105 1. 5843 0. 6600 0.2236
124 1, 8473 1.5873 0.6682 0.2241
125 1. 8695 1. 5874 0.6901 0.2245
126 1.8712 1, 5876 0. 6940 0.2245
127 1. 8809 1. 5903 0.7155 0.2249
128 1. 8874 1. 6201 0. 7500 0.2253
129 1. 8992 1. 6300 0. 7524 0.2263
130 1.9152 1.6361 0.7802 0.2289
131 1. 9172 1.6532 0.7856 0.2329
132 1. 9347 1.6550 0.8179 0.2355
133 1. 9484 1.6786 0.8370 0.2358
134 1. 9485 1.7536 0. 2360
135 1. 9604 1.7651 0. 2365
136 1.9612 1.7798 0.2371
137 2, 0026 1. 7825 0.2382
138 2.017 1, 7846 0.2392
139 2.0387 1. 8028 0.2392
140 2.0979 1.8279 0.2399
141 2.112 1. 8472 0.2400




TABLE II - continued

Rank 12,7 ksi 13. 0 ksi 14,0 ksi 16.5 ksi
142 2.12717 1.9292 0. 2402
143 2.1348 1,9722 0. 2406
144 2,2018 1.9999 0.2407
145 2.2047 2,0782 0. 2453
146 2,2103 2,0953 0.2467
147 2,2226 2.1954 0.2467
148 2,2856 2, 3850 0. 2485
149 2, 3502 0.2493
150 2, 4582 0. 2505
151 0.2514
152 0.2530
153 0.2533
154 0.2542
155 0.2546
156 0.2559
1567 0. 2565
158 0.2566
159 0.2572
160 0. 2586
161 0. 2608
162 0.2625
163 0.2632
164 0.2638
165 0.2639
166 0.2648
167 0. 2656
168 0.2675
169 0.2712
170 0.2722
171 0.2745
172 0.2751
173 0. 2754
174 0.2768
175 0.2779
176 0.2781
177 0. 2800
178 0.2802
179 0.2851
180 0.2874
181 0.2877
182 0.2897
183 0.2919
184 0.29217
185 0.2931
186 0.2935
187 0.2944
188 0. 3005
189 0. 3011



TABLE 1I - continued

Rank 12. 7 ksi 13.0 ksi 14. 0 ksi 16.5 ksi
190 0. 3020
191 0. 3024
192 0. 3131
193 0. 3141
194 0, 3145
195 0. 3266
196 0. 3318
197 0. 3385
198 0. 3440
199 0. 3453
200 0. 3618
TABLE III

PARAMETERS OF SINGLE LOG-NORMAL DISTRIBUTION

12.7 ksi 13. 0 ksi 14. 0 ksi 16.5 ksi
Mean of log (N), x 6. 17725 6.10949  5.66479 5. 32034
Standard deviation, s 0.099334 0.095913 0,099089 0.102987
Coreelation coeff, , r 0. 99044 0.99330 0.98726 0.99668
TABLE IV
PARAMETERS OF SINGLE WEIBULL DISTRIBUTION
(CLASSICAL MOMENT METHOD)
12,7 ksi 13,0 ksi 14,0 ksi 16. 5 ksi
Shape parameter, b 2.53 1.76 1.525 2.28
Minimum life, N, 0. 62529 0. 8046 0. 303241 0.105766
(mill., cycles)
Characteristic life, V 1. 64879 1. 38228 0. 493641 0.229114
(mill, cycles)
Correlation coefficient, r 0.99554 0.99195 0.96932 0.99654




TABLE V

PARAMETERS OF SINGLE WEIBULL DISTRIBUTION

(UPPER VERTICAL MOMENT METHOD)

12,7 ksi 13.0 ksi 14. 0 ksi 16,5 ksi
Shape parameter, b 3.135 1. 819 1.438 2,138
Minimum life, N, 0.59015 0.79284 0. 31089 0.11089
(mill, cycles)
Characteristic life, V 1.65184 1. 38605 0.49197 0. 22850
(mill. cycles)
Correlation coefficient, r 0.99649 0.99371 0. 99504 0.99828
TABLE VI

PARAMETERS OF THE LOG-NORMAL STF COMPONENT DISTRIBUTION

12,7 ksi 13. 0 ksi 14. 0 ksi 16. 5 ksi
MEAN life, x 5.9726 6. 0080 5.5715 5,1868
Stand, deviation, s 0.04032 0.03925 0.03835 0. 04750
No. of specimens in STF 14 42 43 38
component
Correlation coefficient, r 0. 98419 0. 98088 0. 9894

TABLE VII

PARAMETERS OF THE WEIBULL LTF COMPONENT DISTRIBUTION

12, 7 ksi 13. 0 ksi 14. 0 ksi 16. 5 ksi
Shape parameter, b 1.827 1. 444 1.068 1. 625
Minimum life, Ng 1.084 1. 086 0. 417 0.158
(mill, cycles)
Characteristic life, V 1.648 1. 486 0. 541 0.238
(mill, cycles)
Mean of N, N 1.607 1. 447 0.538 0.226
(mill. cycles) _
Mean of log (N), x 6.1994 6.1543 5.7241 5, 3462
Stand. dev. of log (N) 0.07429 0.07203 0.07508 0. 08440
Correlation coeff., r 0.99837 0.98527 0. 99096 0.99584
Estimated no. of specimens
in LTF component distri-
bution (no. of spec. having
N =N,) 136 107 84 165
Percent LTF of total 90. 6 71.0 62. 4 82.5



APPENDIX A

The One-Sided Truncated Log-Normal Distribution

If, in a given distribution the number and corresponding values
of the observations below (or above) a certain value, the truncation point
are known, the distribution is said to be truncated. If the number of the
observations of unspecified values is known the distribution is called cen-
sored, If, however, the two parameters x and s2 of the normal distribu-
tion are known the probabilities can be calculated at any point in the distri-
bution, The parameters may be estimated by the method of maximum
likelihood, Hald has in Ref, 18 given the procedure for estimating the
parameters of a one-sided truncated distribution in which the truncation
point and the values above that point are known.

The point of truncation is taken as origin, i.e. if Xy, Xg, ....
.. X, are the observed endurances then xj = X; - Xir is the variable
(Xtpr is the truncation point).

The procedure is first to calculate
”

2

Mtr -1 %1 (A. 1)

From Table I in Ref, 18 an estimate of the standardised point of truncation
z, is found as z = f(y).

Using Table II to find g(z), we further compute the estimate of the standard
deviation as

n
s=g(z)$ EIXi (A. 2)

and the estimate of the mean is
X= -z8 (A. 3)

The degree of truncation (the percentage of unknown observations in the
population) is P(z) where P is the cumulative normal distribution function
in the Notation.

The above method is directly applicable whether the known ob-
servations are above or below the point of truncation, provided the require-
ment x > 0 is satisfied.
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APPENDIX B

The Weibull (Extreme Value) Distribution

Assuming that in a large group of specimens tested at the same
stress amplitude and subjected to a number N of load cycles, the specimen
that actually fails at this number is necessarily the weakest specimen,
one may consider those specimens failing at the lowest number of cycles
as forming a group of the weakest specimens within the population from
which the sample is drawn. The theory of extreme values may therefore
be applied to the distribution of N,

The theory of extreme values leads to the following probability
distribution function (Ref. 13):

Fy(N) = 1-exp [-(N/V)P] (B. 1)
with boundary conditions
F1(0)=1, Fl(oo)=0

i. e. the probability of survival approaches 100% as N approaches zero,
and approaches zero as N approaches infinity.

It is well known that fatigue, for virgin specimens, is a gradual
(consecutive) chain of developments. It has also been found that the
damaging process in the early stages can be either directly reversible
(e. g. "annealing out damage') or indirectly reversible (e. g. localized
damage inhibited by hardening of the surrounding matrix) thus yielding a
"healing effect.

On this basis it is reasonable to assume a lower bound, N, for
the endurance N below which no failure can occur. This leads to the
following modification of the probability distribution function given in
Eq. (B.1).

F(N) =1 - exp {- EN-No) / (V"No)] b‘)z (B. 2)

The parameters N (the "minimum life") and V (the'tharacteristic life'')
are defined by the probabilities

F(N=ZNg =0
and

F(V) =1/e

The frequency distribution function associated with F(N) is
b-1 i b
f(N) = P N‘No} x expd - [(N-No)/(V-NO)] (B. 5)
(V-N,) [V-Np
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Using the method of moments due to Weibull (Ref, 14), Freudenthal and

Gumbel have in Ref. 13 given a method for calculating the three parameters
No» b and V directly without iteration procedures.

According to Ref, 13, the shape parameter b is defined by the

1Al "
skewness
. WE

B o= [+ 38)- 37 (14 26)7 (14 1) v 24 )] 2
)‘// [ / b) X[]"‘/HEAS)’/-Z(/"//JS)’]T%

The skewness is given by the third central moment /4. 3 and the standard
deviation (¢ as

-3
1/}: - /430' (B.7)

is estimate € sample value
. is esti d by th ple val

—_ R — -3
‘/E 1/,,?6,,_,) N>- 3NN + 2N (B. 8)
and b is then calculated from Eq. (B. 6).

The sample standard deviation s is obtained by the usual formula

S = 5/"/""‘7) (B. 9)

”n -/
The characteristic life V is given by

V=N+ T A(b) (B. 10)
and the minimum life Ny by
N, =V - 0 B(b) (B. 11)
where
/ 2 / -//Z
A(b) = [/-/“"/H /b)][;"’fn BAS)" /"//*‘ /527 (B. 12)
and

)
B(b) = [F(/+ 2/ ) - /..e(/+ //b)] e (B. 13)

Replacing the population standard deviation J with the sample value s,
and using the previously obtained value of b, A(b) and B(b) can be calcu-
lated with the use of tables of the gamma function. V and Ng are then
calculated from Eqgs. B, 10 and B. 11,

In the derivation of the above equations the classical method of
moments of Weibull (Refs. 14 and 15) was used. To distinguish it from
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the method of upper vertical moments (Appendix C), the above method will
hereafter be referred to as ''the classical moment method".
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APPENDIX C

The Truncated Weibull (Extreme Value) Distribution

Weibull (Ref. 16) has given a method for calculating the para-
meters of complete, cencored and truncated distributions by the method
of upper vertical moments,

The upper vertical moment of order r is defined by
—_ Xp
Xp = [1 - P(X)J T ax (C.1)
Xa
In the Weibull (or Extreme Value) distribution

F(N) =1 - exp{- L(—N-NO)/(V-NO)] bj (C.2)

the parameters N, b and V are obtained by solving

X1 = Ng + V];NO Fm Ilag, (1w - 1)]
%2 = No + pgafb /1 (1/0) T [ug, (1/b- n] (C. 3)
%3 = No +pgafs [ (] [ug, (/b - 1)

where [ is the Complete gamma-function, IZur, (1/b -I)Jis an integral
introduced and tabulated by Pearson (Ref. 17). The integral is defined as

) 1 u p_+1
1(11, p)-—m); e ?}Fé/ (C.4)
(o]

uy is given by

[ary
]

1/b
ur = % (ln 1—1P) ) (c' 5)
r
and
P.=1-(1-P)F (C. 6)

Since for a complete distribution

I[oo,(—tl)—-l)J =1 (C.7)

and since
/(1 + 1/b) =1/bf'(1/b) (C.8)
Eqgs. C. 3 take the simpler form
%) = No+ —o2@ [1(1/b)

C1



%y = Ng+ —=2 [N (1/b) . (©9

%4 = No + =0 [(1/b)

Taking the same degree of truncation, (1-Py), for each of Eq. (C. 3), Eq.
(C. 5) shows that uy = ug = uy. It then follows that

x =N, . Ep-Ny =21/P (C. 10)
x2 - Ny 4 - Ny
from which the shape parémeter b is obtained as
b= log 2 _
“log (xq -N,) -log (xg - Ny ) (C.11)
and gy -
X1 X4 - X
Ny = —b 2 "2 (C. 12)
X] + X4 -2 %
The first equation of Eq. (C. 3) then gives
x; - N
V=Ng+ 21~ "o (C.13)
°" JT(A/b) I[uy, (1/b-1)]
An estimate of the moment ;r can be obtained from
Xp = (1-P)T (Njyq - Ny + N (C.14)
f’i =1/2 (Pi + Piyq) (C. 15)

and Pj is the plotting position.

While the three parameters in the case of a complete distribu-
tion may be calculated by the use of Tables o6f the gamma function and
Pearson's integral from Egs. (C.9) and Eq. (C. 13) using Eq. (C. 14) to
estimate the moments, it is simpler to use Eq. (C. 11) and (C. 12) to ob-
tain b and N,. By a suitable transformation of Eq. (C.2), V can be cal-
culated by regression analysis.

Linearising Eq. (C. 2) by taking the natural logarithm of both
sides, we get

1 /b N-N

i =
In (-9 —QV-NO (C. 16)
and, introducing
1 1/b )
=1 —_— C. 17
z=Inl 15 | (
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into Eq. (C. 16), we get
N = N, +z (V-Ng) (C. 18)

Regression by the method of least squares now gives

nZ Nz - NZ
V=Ng + mz’_‘_—(z—zz;z (C.19)

Egs. (C. 11) and (C. 12) are independent of the degree of truncation and
are thus valid for complete as well as for censored or truncated distribu-
tions. Another advantage of using Egs. (C. 11), (C, 12) and (C. 19) is that

they are particularly suited for computation by electronic digital computers.
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APPENDIX D

Linear Regression Analysis

The term regression analysis is used for the statistical analysis
of the association between two (or more) variables. An important appli-
cation is to fit a straight line to a set of experimental data points. One
method is to minimize the sum of the squares of the deviations of the data
points from the line to be fitted to the points. The estimate of the para-
meters for the line obtained by this method are '"best" in the sense that
they are normally distributed with the parameters as mean values and with
least possible variances (Ref. 19). The deviations are assumed to be
normally distributed and their variance constant., With these assumptions
the method of least squares is equivalent to the method of maximum likeli-
hood (Ref. 22). The method of linear estimators (Ref, 12), in which the
basic assumptions are more general (e. g, normality of the distribution of
the dependent variable is not assumed), leads to exactly the same estimates
of the parameters,

In fitting a linear equation
Y = Yo = My, (x-x) (D. 1)
to the set of experimental points(x; - y;) the parameters M, x4 and y, have
to be determined. If there are no requirements concerning the point
(xg, Yo)s the least squares method gives the following estimates of the

parameters,

Xo = E i.e. the mean of x; (D. 2)
Yo =¥ i, e. the mean of Yi .

(Expressions for x and y are found in the Notation).

The slope of the rggression line is then given by

n n n
= > s s
M, - r11=1(xi-x) yi - nni=1 Xiyi'i=nl i j=1 Yi (p,3)
-2
2 (x§ - x) n3 x2- (2 x)°
i=1 i:l i=1

The correlation coefficient, r, characterizes the dependence between the
variables x and y, i.e. in the case of fitting a straight line to experimental
points, r is an overall measure of how well the points fit the regression
line, r is the ratio between the covariance, sxy, and the produce of the
standard deviations of the two variables (see Notation), and is thus given
b n

y s - - _
i=l(xi - X) (yi -y)

= -9 3 -y)°

i=1 i=1

r = 1/2 (D. 4)
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The values r may assume are in the range
-1 r =1

For r = +1, all points lie on the line indicating a complete correlation. For
r = 0 there is no correlation, i.e. the variables are stochastically inde-
pendent. The theory for the correlation coefficient is only valid if the
errors are normally distributed (Ref. 19), and the interpretation of r is
very uncertain if this requirement is not satisfied. In the case of regression
on the probability plots (Section 4), the assumption of normally distributed
variables seems to hold; visual comparisons show that the best fit to the
regression line is in all cases coincident with the highest correlation co- ‘
efficients. |

Linear regression analysis is directly applicable to a function
linearized by any arbitrary transformation provided the variance of the
transformed dependent variable is constant. For a logarithmic transform-
ation this is a rather dubious assumption and some bias in the estimates
may result,

In this work regression analysis has been used to fit a straight
line to the plots of the endurances on probability paper. The choice of plotting
position is of some importance since biased estimates of the parameters
may result if a poor choice of plotting position is made, especially if the
sample is small.

The most used plotting positions are

P=(-1/2)/n (D. 5)

H

and
P

i/ (n+1) (D. 6)

An improved plotting position is given by Blom (Ref, 20) as

i- oL <
P-= <o, =1 D.7
T B 71 (o /= ) | (D7)
where o and A are chosen with regard to the distribution. For a normal
distribution the plotting position

P=(i-3/8)/(n+1/4) (D. 8)
gives a nearly unbiased estimate of the variance (Ref. 12).

For large numbers of observations, say n > 100, the difference
between the various plotting positions is negligible. For practical purposes
the plotting relation given by Eq. (D, 8) was used for all plots. In the
regression analysis of the Weibull distribution, however, the plotting
position (D, 6) was tried. The results did not differ significantly from those
obtained using (D, 8).
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APPENDIX E

Stresses in the Fatigue Specimen Due to Grip Misalignment

During final assembly of the machine a straingauged steel
specimen (see Section 2.5) was used to ensure grip alignment. It was
found, however, that the stress in this specimen could not be completely
eliminated, and the following calculations were carried out to asses the
magnitude of the stresses in the fatigue specimen caused by the grip mis-
alignment. The procedure is to use the strain readings obtained from the
alignment specimen to calculate the angular and translational displacement
of the grips with respect to each other and use these values to compute
the stresses in the fatigue specimen.

The deformation of the specimen caused by grip misalignment
can be split into the two following components:

a) A translational displacement, i.e. the centre lines of the
gripped ends of the specimen remain parallel, but are displaced
a distance § .

b) An angular or rotational displacement, i.e., the gripped ends
are rotated through an angle of , but are not displaced other-
wise,

In the first case the deformation and the resulting bending moment diagram
are as shown in the following sketch

tssspsee M

.1-

7 Tt

The relation between the displacement d and the maximum value of the
bending moment is (Ref, 23),

)
M; = 67:E:z£_ (E. 1)

Pure angular displacement gives rise to the following deformation and
moment diagram (considering the top end as a reference)
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- Ma/2

« +
.

The value of the bending moment at the lower end is (Ref., 23):

_ 6 EIX
M, = 1 (E. 2)

In the general case, when there is a combination of the two deformations,
the deformation and the moment diagram are:

My

“I +
A

Mgy

—-—5-4-’

The moments My, M, and M, and My are related as follows
M]. = M-t - 1/2 Ma

MZ ==M; + My

(E. 3a)

or

(E. 3b)
M, = 2 My + My

The strain readings can be used to calculate Mjand My,, but not
directly since the gauges were located at a distance from the ends., The
sketch shows how the moments at the gauges, Mjand Mj, and the end
- moments M; and Mgy are related. M,

al|l M/

T
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Simple geometrical considerations lead to the following expressions for
the end moments

(€ -a) M} - aMy

M =
1 £ - 2a
(E. 4)
My = (£-2) M- am)
¢ - 2a
Using the well-known equations £ = 9—_3_
E
and g, = _’g 4 = -/—/’
B I 2
the bending moment at the gauges may be expressed as
1 Vd
M = €€EZ
or, using the previous notation
1 /
Ml = é' E Z
, , (E. 5)
M2 = 62 E Z

The readings of the bending strains were obtained by clamping
the specimen in the grips, adjusting the mean stress spring and the upper
head until there was no axial load in the specimen, and take one set of
readings from all gauge pairs. Then the specimen was released, rotated 90
degrees, clamped again and a new set of readings taken, This was re-
peated until the specimen was rotated through 360 degrees and four sets
of readings obtained. The readings were taken in this manner to avoid
errors due to initial curvature of the alignment specimen. Although the
time between alignment checks was up to three months no significant
changes were found.

In the last check the following average readings were obtained:

Long, plane Transverse plane

Top end + 32 + 3
Bottom end - 60 + 3
The readings are in microinch per inch ( A in. /in,) For

bending in the longitudinal plane, the minus sign occurs when the surface
strain at the front of the specimen is tensile. Since the bending strains

in the transverse plane are very small compared to those in the longitudinal
plane, only bending in the latter plane need be considered.
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The two gauges on opposite faces at each cross section were
wired in adjacent arms in a Wheatstone bridge, giving readings of twice
the actual strain. Therefore, the actual strains are

e'1=+32/z

€ =-60/2
2

16 M in, /in.

30/( in, /in,
Eq. (E.5) gives the bending moments at the gauges:

M'1 - 27. 3 1b. in.

M'2 ==51. 4 1b. in.

The end moments M; and Mgy are then computed, using Eq. (E. 4):
M; = 53.5 1b. in.
M, =-81. 6 1b. in,

Using Eq. (E. 3b) the '"translational' and "'angular'' moments are calcu-
lated:

M, = 25.4 1b, in.

M, =-56.2 lb. in,

a

The translational displacement of one grip with respect to the other is then
(from Eq. (E. 1) ):

$ =0.79 x 1074 in,
The angular displacement is given by Eq. (E. 2)
ot = -0.55x 10~% radians
The moments in the fatigue specimen caused by these displacements are
found by equating the expressions for the displacements for the two speci-

mens. Denoting the alignment specimen by subscript a and the fatigue
specimen by subscript f, then

o - Mig 72 . wy 4%

T BE, Iy 6Ef It
; Er Iy Ja 2
i.e. Mif = ‘7_9 Mta
Ecl: f

E4




and similarly

_ Bk {a
Maf Ec I zf Ve

Substituting the numerical values for E, I and 1 we get

a

M;¢ = 1. 99 Ib. in,
Maf= -10 57 lb. ino

Eq. A. 3 now gives the moments at the ends of the test section
Mi¢ = 2.781b.1in,

-3. 56 1b, in,

Moy

The stresses at the upper and lower end of the test section of the fatigue
specimen may now be calculated using the usual formula for the bending
stress at the surface, viz,

.M
JB'Z

Thus we obtain

U‘B1= 1160 psi

J By = -1490 psi

Since the minus sign indicates tensile stress at the front of the specimen,
the maximum tensile surface stress is at the lower front fillet.
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APPENDIX F

Temperature Increase in the Fatigue Specimens During the Test

In fatigue tests conducted at room temperatures it is usually
assumed that the temperature rise in the test piece is constant for all
stress amplitudes or so small that it can be neglected. This may not
always be true; in some cases the temperatures developed in the specimen
at high stress amplitudes are so high that a S-N curve determined from
such tests is based on endurances which have actually been measured at
different temperatures.

The teraperature rise is a measure of the energy dissipated
during fatiguing of the specimen, i,e. it is a measure of the width of the
hysteresis loop. Some energy is stored during the fatigue process (Ref. 24)
however, the stored energy is a small fraction of the total energy. A
number of factors such as internal damping, heat transfer properties of
the material, stress distribution and frequency and amplitude of the applied
load determine the temperature rise,

Energy dissipation in the specimen may be measured in two
ways: by measuring the amount of heat produced, e.g. by attaching a
thermocouple to the specimen, or by measuring the damping in the specimen,
Since the second method is less direct and has the disadvantage that the
measured energy loss in most cases would include energy lost in the grips,
etc., the thermocouple method was preferred.

To ensure good heat conduction the thermocouple was soldered
to a piece of thin copper sheet, curved to fit the waisted part of the speci-
men, The copper piece and the thermocouple were covered with a 1/16 in,
layer of plastic to minimize heat loss to the air. A heat-conducting
grease was used to further enhance heat transfer to the thermocouple. The
reference thermocouple was attached to the machine structure (assumed
to remain at room temperature throughout the test), so that the active
thermocouple only recorded temperatures above the room temperature,
The temperature was recorded continuously during the test but because
the virgin specimens were very soft the energy loss was large in the be-
ginning of the test and full operating stress was not reached until about
4000 cycles, therefore the readings before this number of cycles are not
included. The temperature increase (above room temperature) vs. number
of cycles is plotted in Fig. 18 for typical specimens from the four stiress
levels.

The curves for the specimens tested at the two lowest stress
amplitudes, 12.7 ksi and 13, 0 ksi, show that once the initial hardening
was over, the amount of dissipated energy remained small during the
greater part of the test with a small increase toward the end. The energy
dissipated in the specimens tested at the higher stresses, 16.5 ksi and
14. 0 ksi, increased steadily during the test, indicating a continuing
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widening of the hysteresis loop. The same trend is reported in Ref, 25,
Since most of the energy is dissipated in slip zones, the observed temper-~
ature increase is a measure of the severity of the slip. This is confirmed
bythe metallographic examination of the failed specimens in Ref. 8, which
showed that gross deformation took place with the grains breaking up into
cells (H-type fatigue damage) at the highest stress, while at the lowest
stress damage was confined to slip bands (F-type fatigue damage).

The relatively small amounts of heat developed in the specimens
(the maximum temperature above the room temperature was about 17 deg.
F) leads to the assumption that the heating of the specimen had little or no
effect on the observed fatigue endurances,
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FIG.1 TYPICAL TRANSVERSE SECTION OF SPECIMEN
BEFORE TESTING. ASTM GRAIN SIZE NO.8 (x100)
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FIG. 2 THE COPPER (OFHC) FATIGUE SPECIMEN
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FREQUENCY

1,

1.

12,7 ksi

16.5 ksi

b =3.135
b = 2.53
b=2,28
b=2.138

|

1

CLASSICAL MOMENT
METHOD

UPPER VERTICAL
MOMENT METHOD

REDUCED NUMBER OF CYCLES, (N - N_)/(V - N.)

FIGURE 12 WEIBULL FREQUENCY DISTRIBUTION CURVES
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FIG.18 TEMPERATURE INCREASE (ABOVE ROOM TEMPERATURE)

IN THE FATIGUE SPECIMENS WITH NUMBER OF CYCLES d.lolby




